在本文中,我们描述了一种表示音频信号的表示方法,以实现COVID-19检测任务。将原始音频样品用1D卷积过滤器进行处理,这些过滤器被参数化为余弦调制的高斯函数。这些内核的选择允许将滤纸解释为光滑的带通滤波器。过滤后的输出汇总,对数压缩并用于基于自我注意的相关加权机制。相关权重强调了时间频分解的关键区域,这对于下游任务很重要。该模型的后续层由复发架构组成,模型经过训练,以执行COVID-19检测任务。在我们对COSWARA数据集的实验中,我们表明,所提出的模型在基线系统以及其他表示学习方法上实现了显着的性能改进。此外,提出的方法被证明适用于语音和呼吸信号以及从较大的数据集中转移学习。
translated by 谷歌翻译
COVID-19导致与不同的SARS-COV-2变体相关的多种感染波。研究报告了这些变体对患者呼吸健康的影响不同。我们探索从COVID-19受试者收集的声学信号是否显示出可区分的声学模式,这表明有可能预测潜在的病毒变体。我们分析了从三个主题库中收集的COSWARA数据集,即i)健康,ii)在三角洲变体占主导地位期间记录的covid-199受试者,以及III)来自Omicron Expear中记录的COVID-19的数据。我们的发现表明,咳嗽,呼吸和语音等多种声音类别表明,在将COVID-19与Omicron和Delta变体进行比较时,声音特征差异很大。在曲线下,分类区域大大超过了被Omicron感染的受试者与三角洲感染者的机会。使用来自多个声音类别的得分融合,我们在95%的特异性下获得了89%和52.4%的敏感性的区域。此外,使用分层三类方法将声学数据分类为健康和共同-19阳性,并将进一步的COVID受试者分为三角洲和Omicron变体,从而提供了高水平的3类分类精度。这些结果提出了设计基于声音的COVID-19诊断方法的新方法。
translated by 谷歌翻译
该报告描述了用于在第二次DICOVA挑战中使用三种不同的声学模态(即语音,呼吸和咳嗽)来检测COVID-19阳性的系统。所提出的系统基于4种不同方法的组合,每种方法都集中在问题的一个方面上,并在呼吸,咳嗽和语音轨道上分别达到86.41、77.60和84.55的盲试AUC,并且这三个轨道的融合中的AUC为85.37。
translated by 谷歌翻译
COVID-19大流行已经加快了关于替代,快速有效的Covid-19诊断方法设计的研究。在本文中,我们描述了Coswara工具,这是一个网站应用程序,旨在通过分析呼吸声样本和健康症状来启用COVID-19检测。使用此服务的用户可以使用连接到Internet的任何设备登录到网站,提供当前的健康症状信息,并记录很少有对应于呼吸,咳嗽和语音的声音。在分析此信息上的一分钟内,网站工具将向用户输出COVID-19概率分数。随着COVID-19的大流行继续要求进行大规模和可扩展的人口水平测试,我们假设所提出的工具为此提供了潜在的解决方案。
translated by 谷歌翻译
Deep neural networks have emerged as the workhorse for a large section of robotics and control applications, especially as models for dynamical systems. Such data-driven models are in turn used for designing and verifying autonomous systems. This is particularly useful in modeling medical systems where data can be leveraged to individualize treatment. In safety-critical applications, it is important that the data-driven model is conformant to established knowledge from the natural sciences. Such knowledge is often available or can often be distilled into a (possibly black-box) model $M$. For instance, the unicycle model for an F1 racing car. In this light, we consider the following problem - given a model $M$ and state transition dataset, we wish to best approximate the system model while being bounded distance away from $M$. We propose a method to guarantee this conformance. Our first step is to distill the dataset into few representative samples called memories, using the idea of a growing neural gas. Next, using these memories we partition the state space into disjoint subsets and compute bounds that should be respected by the neural network, when the input is drawn from a particular subset. This serves as a symbolic wrapper for guaranteed conformance. We argue theoretically that this only leads to bounded increase in approximation error; which can be controlled by increasing the number of memories. We experimentally show that on three case studies (Car Model, Drones, and Artificial Pancreas), our constrained neurosymbolic models conform to specified $M$ models (each encoding various constraints) with order-of-magnitude improvements compared to the augmented Lagrangian and vanilla training methods.
translated by 谷歌翻译
This paper is a technical overview of DeepMind and Google's recent work on reinforcement learning for controlling commercial cooling systems. Building on expertise that began with cooling Google's data centers more efficiently, we recently conducted live experiments on two real-world facilities in partnership with Trane Technologies, a building management system provider. These live experiments had a variety of challenges in areas such as evaluation, learning from offline data, and constraint satisfaction. Our paper describes these challenges in the hope that awareness of them will benefit future applied RL work. We also describe the way we adapted our RL system to deal with these challenges, resulting in energy savings of approximately 9% and 13% respectively at the two live experiment sites.
translated by 谷歌翻译
Aspect Based Sentiment Analysis is a dominant research area with potential applications in social media analytics, business, finance, and health. Prior works in this area are primarily based on supervised methods, with a few techniques using weak supervision limited to predicting a single aspect category per review sentence. In this paper, we present an extremely weakly supervised multi-label Aspect Category Sentiment Analysis framework which does not use any labelled data. We only rely on a single word per class as an initial indicative information. We further propose an automatic word selection technique to choose these seed categories and sentiment words. We explore unsupervised language model post-training to improve the overall performance, and propose a multi-label generator model to generate multiple aspect category-sentiment pairs per review sentence. Experiments conducted on four benchmark datasets showcase our method to outperform other weakly supervised baselines by a significant margin.
translated by 谷歌翻译
The SNMMI Artificial Intelligence (SNMMI-AI) Summit, organized by the SNMMI AI Task Force, took place in Bethesda, MD on March 21-22, 2022. It brought together various community members and stakeholders from academia, healthcare, industry, patient representatives, and government (NIH, FDA), and considered various key themes to envision and facilitate a bright future for routine, trustworthy use of AI in nuclear medicine. In what follows, essential issues, challenges, controversies and findings emphasized in the meeting are summarized.
translated by 谷歌翻译
Existing regulations prohibit model developers from accessing protected attributes (gender, race, etc.), often resulting in fairness assessments on populations without knowing their protected groups. In such scenarios, institutions often adopt a separation between the model developers (who train models with no access to the protected attributes) and a compliance team (who may have access to the entire dataset for auditing purpose). However, the model developers might be allowed to test their models for bias by querying the compliance team for group fairness metrics. In this paper, we first demonstrate that simply querying for fairness metrics, such as statistical parity and equalized odds can leak the protected attributes of individuals to the model developers. We demonstrate that there always exist strategies by which the model developers can identify the protected attribute of a targeted individual in the test dataset from just a single query. In particular, we show that one can reconstruct the protected attributes of all the individuals from O(Nk log n/Nk) queries when Nk<<n using techniques from compressed sensing (n: size of the test dataset, Nk: size of smallest group). Our results pose an interesting debate in algorithmic fairness: should querying for fairness metrics be viewed as a neutral-valued solution to ensure compliance with regulations? Or, does it constitute a violation of regulations and privacy if the number of queries answered is enough for the model developers to identify the protected attributes of specific individuals? To address this supposed violation, we also propose Attribute-Conceal, a novel technique that achieves differential privacy by calibrating noise to the smooth sensitivity of our bias query, outperforming naive techniques such as Laplace mechanism. We also include experimental results on the Adult dataset and synthetic data (broad range of parameters).
translated by 谷歌翻译
已经开发了增强学习(RL)技术来优化工业冷却系统,与传统的启发式政策相比,提供了可观的节能。工业控制中的一个主要挑战涉及由于机械限制而在现实世界中可行的学习行为。例如,某些操作只能每隔几个小时执行一次,而其他动作可以更频繁地采取。如果没有广泛的奖励工程和实验,RL代理可能无法学习机械的现实操作。为了解决这个问题,我们使用层次结构的增强学习与多种根据操作时间尺度控制动作子集的代理。我们的分层方法可以在现有基线上节省能源,同时在模拟的HVAC控制环境中保持在安全范围内的限制(例如操作冷却器)。
translated by 谷歌翻译